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ABSTRACT
The sheer increase in network speed and the massive deployment
of containerized applications in a Linux server has led to the con-
sciousness that iptables, the current de-facto firewall in Linux,
may not be able to cope with the current requirements particularly
in terms of scalability in the number of rules. This paper presents
an eBPF-based firewall, bpf-iptables, which emulates the ipta-
bles filtering semantic while guaranteeing higher throughput. We
compare our implementation against the current version of ipta-
bles and other Linux firewalls, showing how it achieves a notable
boost in terms of performance particularly when a high number of
rules is involved. This result is achieved without requiring custom
kernels or additional software frameworks (e.g., DPDK) that could
not be allowed in some scenarios such as public data-centers.

CCS CONCEPTS
• Networks → Firewalls; Programmable networks; Packet classifi-
cation;
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1 INTRODUCTION
Nowadays, the traditional security features of a Linux host are
centered on iptables, which allows applying different security
policies to the traffic, such as to protect from possible network
threats or to prevent specific communication patterns between
different machines. Starting from its introduction in kernel v2.4.0,
iptables remained the most used packet filtering mechanism in
Linux, despite being strongly criticized under many aspects, such as
for its far from cutting-edge matching algorithm (i.e., linear search)
that limits its scalability in terms of number of policy rules, its
syntax, not always intuitive, and its old code base, which is difficult
to understand and maintain. In the recent years, the increasing
demanding of network speed and the transformation of the type of
applications running in a Linux server has led to the consciousness
that the current implementation may not be able to cope with
the modern requirements particularly in terms of performance,
flexibility, and scalability [18].

Nftables [11] was proposed in 2014 with the aim of replacing
iptables; it reuses the existing netfilter subsystem through an
in-kernel virtual machine dedicated to firewall rules, which rep-
resents a significant departure from the iptables filtering model.
In particular, it (i) integrates all the functionalities provided by

{ip, ip6, arp, eb}tables; (ii) uses a nicer syntax; (iii) improves
the classification pipeline introducing maps and concatenations,
allowing to construct the ruleset in a way that reduces the number
of memory lookups per packet before finding the final action to
apply; finally, (iv) it moves part of the intelligence in the userspace
nft tool, which is definitely more complex than iptables but al-
lows to potentially deliver new features or protocols without kernel
upgrades [4]. Although this yields advantages over its predeces-
sor, nftables (and other previous attempts such as ufw [38] or
nf-HiPAC [29]) did not have the desired success, mainly due to
the reluctance of the system administrators to adapt their exist-
ing configurations (and scripts) operating on the old framework
and move on to the new one [12]. This is also highlighted by the
fact that the majority of today’s open-source orchestrators (e.g.,
Kubernetes [22], Docker [21]) are strongly based on iptables.

Recently, another in-kernel virtual machine has been proposed,
the extended BPF (eBPF) [2, 17, 35], which offers the possibility to
dynamically generate, inject and execute arbitrary code inside the
Linux kernel, without the necessity to install any additional kernel
module. eBPF programs can be attached to different hook points
in the networking stack such as eXpress DataPath (XDP) [20] or
Traffic Control (TC), hence enabling arbitrary processing on the
intercepted packets, which can be either dropped or returned (pos-
sibly modified) to the stack. Thanks to its flexibility and excellent
performance, functionality, and security, recent activities on the
Linux networking community have tried to bring the power of
eBPF into the newer nftables subsystem [6]. Although this would
enable nftables to converge towards an implementation of its VM
entirely based on eBPF, the proposed design does not fully exploit
the potential of eBPF, since the programs are directly generated
in the kernel and not in userspace, thus losing all the separation
and security properties guaranteed by the eBPF code verifier that
is executed before the code is injected in the kernel.

On the other hand, bpfilter [8] proposes a framework that
enables the transparent translation of existing iptables rules into
eBPF programs; system administrators can continue to use the exist-
ing iptables-based configuration without even knowing that the
filtering is performed with eBPF. To enable such design, bpfilter
introduces a new type of kernel module that delegates its func-
tionality into user space processes, called user mode helper (umh),
which can implement the rule translation in userspace and then
inject the newly created eBPF programs in the kernel. Currently,
this work focuses mainly on the design of a translation architecture
for iptables rules into eBPF instructions, with a small proof of
concept that showed the advantages of intercepting (and therefore
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filtering) the traffic as soon as possible in the kernel, and even in
the hardware (smartNICs) [37].

The work presented in this paper continues along the bpfilter
proposal of creating a faster and more scalable clone of iptables,
but with the following two additional challenges. First is to pre-
serve the iptables filtering semantic. Providing a transparent
replacement of iptables, without users noticing any difference,
imposes not only the necessity to respect its syntax but also to
implement exactly its behavior; small or subtle differences could
create serious security problems for those who use iptables to
protect their systems. Second is to improve speed and scalability
of iptables; in fact, the linear search algorithm used for matching
traffic is the main responsible for its limited scalability particu-
larly in the presence of a large number of firewall rules, which is
perceived as a considerable limitation from both the latency and
performance perspective.

Starting from the above considerations, this paper presents the
design of an eBPF-based clone of iptables, called bpf-iptables,
which implements an alternative filtering architecture in eBPF,
while maintaining the same iptables filtering semantic and with
improved performance and scalability. Being based on the eBPF sub-
system, bpf-iptables can leverage any possible speedup available
in the Linux kernel to improve the packet processing throughput.
Mainly, XDP is used to provide a fast path for packets that do not
need additional processing by the Linux stack (e.g., packets routed
by the host) or to discard traffic as soon as it comes to the host.
This avoids useless networking stack processing for packets that
must be dropped by moving some firewall processing off the host
CPU entirely, thanks to the work that has been done to enable the
offloading at XDP-level [7].

Our contributions are: (i) the design of bpf-iptables; it pro-
vides an overview of the main challenges and possible solutions in
order to preserve the iptables filtering semantic given the differ-
ence, from hook point perspective, between eBPF and Netfilter.
To the best of our knowledge, bpf-iptables is the first application
that provides an implementation of the iptables filtering in eBPF.
(ii) A comprehensive analysis of the main limitations and challenges
required to implement a fast matching algorithm in eBPF, keeping
into account the current limitations [28] of the above technology.
(iii) A set of data plane optimizations that are possible thanks to
the flexibility and dynamic compilation (and injection) features of
eBPF, allowing us to create at runtime an optimized data path that
fits perfectly with the current ruleset being used.

In the rest of this paper, we present the challenges, design choices
and implementation of bpf-iptables and we compare it with the
current implementations of iptables and nftables. For this paper,
we take into account only the support for the FILTER table, while
we leave as future work the support for additional features such as
NAT or MANGLE.

2 DESIGN CHALLENGES
This Section introduces the main challenges we encountered while
designing bpf-iptables, mainly derived from the necessity to
emulate the iptables implementation with the eBPF technology.
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Figure 1: Location of netfilter and eBPF hooks.

2.1 Guaranteeing filtering semantic
The main difference between iptables and bpf-iptables lies in
their underlying frameworks, netfilter and eBPF respectively.
Iptables defines three default chains for filtering rules associated
to the three netfilter hooks [31] shown in Figure 1, which allow
to filter traffic in three different locations of the Linux networking
stack. Particularly, those hook points filter traffic that (i) terminates
on the host itself (INPUT chain), (ii) traverses the host such as when
it acts as a router and forwards IP traffic betweenmultiple interfaces
(the FORWARD chain), and (iii) leaves the host (OUTPUT chain).

On the other hand, eBPF programs can be attached to different
hook points. As shown in Figure 1, ingress traffic is intercepted in
the XDP or traffic control (TC) module, hence earlier than netfil-
ter; the opposite happens for outgoing traffic, which is intercepted
later than netfilter. The different location of the filtering hooks
in the two subsystems introduces the challenge of preserving the
semantic of the rules, which, when enforced in an eBPF program,
operate on a different set of packets compared to the one that would
cross the same netfilter chain. For example, rule “iptables -A
INPUT -j DROP” drops all the incoming traffic crossing the INPUT
chain, hence directed to the current host; however, it does not affect
the traffic forwarded by the host itself, which traverses the FORWARD
chain. A similar “drop all” rule, applied in the XDP or TC hook, will
instead drop all the incoming traffic, including packets that are for-
warded by the host itself. As a consequence, bpf-iptables must
include the capability to predict the iptables chain that would be
traversed by each packet, maintaining the same semantic although
attached to a different hook point.

2.2 Efficient classification algorithm in eBPF
The selection and implementation of a better matching algorithm
proved to be challenging due to the intrinsic limitations of the eBPF
environment [28]. In fact, albeit bettermatching algorithms arewell-
known in the literature (e.g., cross-producting [34], decision-tree
approaches [15, 19, 30, 32, 33, 36]), they require either sophisticated
data structures that are not currently available in eBPF1 or an un-
predictable amount of memory, which is not desirable for a module

1eBPF programs do not have the right to use traditional memory; instead, they need
to rely on a limited set of predefined memory structures (e.g., hash tables, arrays,
and a few others), which are used by the kernel to guarantee safety properties and
possibly avoid race conditions. As a consequence, algorithms that require different
data structures are not feasible in eBPF.
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operating at the kernel level. Therefore, the selected matching al-
gorithm must be efficient and scalable, but also feasible with the
current eBPF technology.

2.3 Support for stateful filters (conntrack)
Netfilter tracks the state of TCP/UDP/ICMP connections and
stores them in a session (or connection) table (conntrack). This table
can be used by iptables to specify stateful rules that accept/drop
packets based on the characteristic of the connection they belong
to. For instance, iptables may have a rule that accepts only out-
going packets belonging to NEW or ESTABLISHED connections, e.g.,
enabling the host to generate traffic toward the Internet (and to
receive return packets), while connections initiated from the out-
side world may be forbidden. As shown in Figure 1, bpf-iptables
operates before packets enter in netfilter and therefore it cannot
exploit the Linux conntrack module to track incoming and outgoing
packets. As a consequence, it has to implement its own connection
tracking module, which enables filtering rules to operate also on
the state of the connection, as described in Section 4.5.

3 OVERALL ARCHITECTURE
Figure 2 shows the overall system architecture of bpf-iptables.
The data plane includes three main categories of eBPF programs.
The first set, shown in blue, implements the classification pipeline
(i.e., the ingress, forward or output chain); a second set, in yellow,
implements the logic required to guarantee the semantics of ipt-
ables; a third set, in orange, is dedicated to connection tracking.
Additional programs, in grey, are dedicated to ancillary tasks such
as packet parsing.

The ingress pipeline is called upon receiving a packet either
on the XDP or TC hook. By default, bpf-iptables attaches eBPF
programs to the XDP hook, which triggers the execution of the
filtering pipeline immediately after the arrival of a packet on the
NIC. However, this requires the explicit support for XDP in the
NIC driver2; bpf-iptables automatically falls back to the TC hook
when the NIC driver is not XDP-compatible. If the Linux host has
multiple NICs to attach to, bpf-iptables can selectively attach to
either XDP/TC hooks, hence guaranteeing fast processing on XDP-
compatible NICs while providing transparent support for other
NICs as well. The egress pipeline is instead called upon receiving a
packet on the TC egress hook, before the packet leaves the host;
XDP is not available in this transmission path3.

Once in the ingress pipeline, the packet can enter either the IN-
PUT or FORWARD chain depending on the routing decision; in the
first case, if the packet is not dropped, it will continue its journey
through the Linux TCP/IP stack, ending up in a local application. In
the second case, if the FORWARD pipeline ends with an ACCEPT deci-
sion, bpf-iptables redirects the packet to the target NIC, without
returning to the Linux networking stack (more details will be pre-
sented in Section 4.4.2). On the other hand, a packet leaving the
host triggers the execution of bpf-iptables when it reaches the
TC egress hook. In such event, bpf-iptables has to find whether
the outgoing packet comes from a local application and therefore

2NIC driver that have native support for XDP can be found at [9].
3A proposal for adding an XDP Egress hook in the future was put forward and is under
discussion in the Linux kernel community [10].

must be processed by the OUTPUT chain, or the host has forwarded
it; in the latter case, it is passed as it is, without further processing.

Finally, a control plane module (not depicted in Figure 2) is exe-
cuted in userspace and provides three main functions: (i) initializa-
tion and update of the bpf-iptables data plane, (ii) configuration
of the eBPF data structures required to run the classification algo-
rithm and (iii) monitoring for changes in the number and state of
available NICs, which is required to fully emulate the behavior of
iptables, handling the traffic coming from all the host interfaces.
We will describe the design and architecture of the bpf-iptables
data plane in Section 4, while the operations performed by the
control plane will be presented in Section 5.

4 DATA PLANE
In the following subsections we present the different components
belonging to the bpf-iptables dataplane, as shown in Figure 2.

4.1 Header parsing
The bpf-iptables ingress and egress pipeline start with a Header
Parser module that extracts the packet headers required by the
current filtering rules, and stores each field value in a per-CPU
array map shared among all the eBPF programs in the pipeline,
called packet metadata. This avoids the necessity of packet parsing
capabilities in the subsequent eBPF programs and guarantees both
better performance and a more compact processing code. The code
of theHeader Parser is dynamically generated on the fly; when a new
filtering rule that requires the parsing of an additional protocol field
is added, the control plane re-generates, compiles and re-injects the
obtained eBPF program in the kernel in order to extract also the
required field. As a consequence, the processing cost of this block
is limited exactly to the number of fields that are currently needed
by the current bpf-iptables rules.

4.2 Chain Selector
The Chain Selector is the second module encountered in the bpf-
iptables pipeline. It has the responsibility to classify and forward
the traffic to the correct classification pipeline (i.e., chain), in order
to preserve the iptables semantic, answering to the problem pre-
sented in Section 2.1. It anticipates the routing decision that would
have been performed later in the TCP/IP stack and is, therefore,
able to predict the right chain that will be hit by the current packet.
The idea is that traffic coming from a network interface would cross
the INPUT chain only if it is directed to a local IP address, visible
from the host root namespace, while incoming packets directed to
a remote IP address would cross the FORWARD chain. On the other
hand, an outgoing packet would traverse the OUTPUT chain only if
it has been generated locally, i.e., by a local IP address.

To achieve this behavior, bpf-iptables uses a separate Chain
Selector module for the ingress and egress pipeline. The Ingress
Chain Selector classifies traffic based on the destination IP address of
the traversed packet; it checks if the address is present in the BPF_-
HASH map that keeps local IPs and then sends the traffic to either
the INPUT or FORWARD chain. These operations are delegated to two
different instances of the Ingress Chain Selector, which represent
two distinct eBPF programs. The first program (Part I) performs
the actual classification of the packet and decides the target chain,

ACM SIGCOMM Computer Communication Review



Ingress pipeline

From netdev
(e.g., eth0)

Ingress Chain 
Selector (part 2)

To netdev 
(e.g., eth1)

TC egress hook
To Linux 

TCP/IP stack
From Linux 
TCP/IP stack

Netfilter Netfilter

X
D

P
 

in
gr

es
s 

h
o

o
k

IP
 in

p
u

t
p

ro
ce

ss
in

g

IP
 o

u
tp

u
t

p
ro

ce
ss

in
g

FIB 
Lookup

Header
Parser

Ingress Chain 
Selector (part 1)

INGRESS 
CHAIN

FORWARD 
CHAIN

[local dst]
Conntrack 

Update

Conntrack 
Update[remote dst]

Conntrack 
Label

Headers Destination 
Chain

Flow State
Destination 

Chain
Flow StateHeader, Flow 

State, etc…

Packet metadata (per-CPU map shared across the entire pipeline)

Redirect 
program

Redirect 
program

Conntrack 
Table

Lookup

Lookup
failed

Update

Egress pipeline

Header
Parser

Egress Chain 
Selector

OUTPUT 
CHAIN

[local src] Conntrack 
Update

Conntrack 
Label

Headers
Destination 

Chain
Flow State

Header, Flow 
State, etc…

[remote src]

Lookup

Packet metadata (per-CPU map shared across the entire pipeline)

TC ingress hook

Redirect 
program

Figure 2: High-level architecture of bpf-iptables.

which is written in the packet metadata per-CPU map shared across
the entire pipeline. When triggered, the second program (Part II),
reads the destination chain from the per-CPU map and forwards
the packet to the correct chain, by performing a tail call to the first
program of the target classification pipeline. Although this process
could be performed within a single eBPF program, we decided to
split the two tasks in order to allow the subsequent program of the
pipeline (i.e., the connection tracking module) to benefit from the
knowledge of the target chain and adopt several optimizations that
would improve the bpf-iptables processing speed. For example,
if the first rule of the INPUT chain requires to accept all the ESTAB-
LISHED connections, the connection tracking module, after reading
the target chain (e.g., INPUT), can directly jump at the end of the
classification pipeline, without further processing.

On the other hand, the Egress Chain Selector, which is part of
the egress pipeline, classifies traffic based on the source IP address
and sends it to either the OUTPUT chain, or directly to the output
interface4.

4.3 Matching algorithm
To overcome the performance penalties of the linear search adopted
by iptables, bpf-iptables adopts the more efficient Linear Bit-
Vector Search (LBVS) [25]) classification algorithm. LBVS provides
a reasonable compromise between feasibility and speed; it has an
intrinsic pipelined structure which maps nicely with the eBPF tech-
nology, hence making possible the optimizations presented in Sec-
tion 4.4.2. The algorithm follows the divide-and-conquer paradigm:
it splits filtering rules into multiple classification steps, based on

4Traffic traversing the FORWARD chain has already been matched in the ingress pipeline,
hence it should not be matched in the OUTPUT chain.

the number of protocol fields present in the ruleset; intermediate
results that carry the potentially matching rules are combined to
obtain the final solution.
Classification. LBVS requires a specific (logical) bi-dimensional
table for each field on which packets may match, such as the three
fields (IP destination address, transport protocol, TCP/UDP destina-
tion port) shown in the example of Figure 3. Each table contains the
list of unique values for that field present in the given ruleset, plus
a wildcard for rules that do not care for any specific value. Each
value in the table is associated with a bitvector of length N equal to
the number of rules, in which the ith ’1’ bit tells that rule i can be
possibly matched when the field assumes that value. Filtering rules,
and the corresponding bits in the above bitvector, are ordered with
highest priority rule first; hence, rule #1 corresponds to the most
significant bit in the bitvector.

The matching process is repeated for each field we are operating
with, such as the three fields shown in Figure 3. The final matching
rule can be obtained by performing a bitwise AND operation on
all the intermediate bitvectors returned in the previous steps and
determining the most significant ‘1’ bit in the resulting bitvector.
This represents the matched rule with the highest priority, which
corresponds to rule #1 in the example in Figure 3. Bitmaps enable the
evaluation of rules in large batches, which depend on the parallelism
of the main memory; while still theoretically a linear algorithm,
this scaling factor enables a 64x speedup compared to a traditional
linear search on common CPUs.
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4.4 Classification Pipeline
A packet leaving the Chain Selector enters in the target classifica-
tion pipeline, shown in Figure 4, whose role is to filter the packet
according to the rules configured for that chain.

The bpf-iptables classification pipeline is made by a cascade
of eBPF programs calling each other by means of tail calls where
every single program manages a single matching protocol field of
the current ruleset. The pipeline contains a per-CPU map shared
among all the programs belonging to the same chain that is used to
share some information between the programs of the chain, such
as the temporary bitvector containing the partial matching result,
which is initialized with all the bits set to 1 before a packet enters
the pipeline.

Every single module of the pipeline performs the following oper-
ations: (i) extracts the needed packet fields from the packet metadata
per-CPU map, previously filled by the Header Parser module; (ii)
performs a lookup on its own eBPF map to find the bitvector as-
sociated to the current packet value for that field and (iii-a) if the
lookup succeeds, performs a bitwise AND between this bitvector
and the temporary bitvector contained in the per-CPU map. If the
lookup fails and there is a wildcard rule, (iii-b) the AND is performed
between the bitvector associated with the wildcard rules and the
one present in the per-CPU map. Instead, (iii-c) if the lookup fails
and there are not wildcard rules for that field, we can directly con-
clude that the current packet does not match any rule within the
ruleset; in this event, the default action for that chain is applied,
skipping all the subsequent modules of the pipeline. Finally, except
the last case, (iv) it performs a tail-call to the next module of the
chain, after saving the bitvector into the per-CPU map.
Bitvectors comparison. Since every matching rule is represented
as a 1 in the bitvector, bpf-iptables uses an array of N 64bit un-
signed integers to support a large number of rules (e.g., 2.000 rules
can be represented as an array of 32 uint64_t). As consequence,
when performing the bitwise AND, the current eBPF program
has to perform N cycles on the entire array to compare the two
bitvectors. Given the lack of loops on eBPF, this process requires
loop unrolling and is therefore limited by the maximum number
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Figure 4: bpf-iptables classification pipeline.

of possible instructions within an eBPF program, thus also limit-
ing the overall number of rules supported by bpf-iptables5. The
necessity of perform loop unrolling is, as consequence, the most
compelling reason for splitting the classification pipeline of bpf-
iptables across many eBPF modules, instead of concentrating all
the processing logic within the same eBPF program.
Action lookup. Once we reach the end of the pipeline, the last
program has to find the rule that matched the current packet. This
program extracts the bitvector from the per-CPU shared map and
looks for the position of the first bit to 1 in the bitvector, using the
de Bruijn sequences [26] to find the index of the first bit set in a
single word; once obtained, it uses that position to retrieve the final
action associated with that rule from a given BPF_ARRAY map and
finally applies the action. Obviously, if no rules have been matched,
the default action is applied.

4.4.1 Clever data sharing. bpf-iptables makes a massive use of
eBPF per-CPU maps, which represent memory that can be shared
among different cascading programs, but that exist in multiple inde-
pendent instances equal to the number of available CPU cores. This
memory structure guarantees very fast access to data, as it statically
assigns a set of memory locations to each CPU core; consequently,
data is never realigned with other L1 caches present on other CPU
cores, hence avoiding the (hidden) hardware cost of cache synchro-
nization. Per-CPUmaps represent the perfect choice in our scenario,
in which multiple packets can be processed in parallel on different
CPU cores, but where all the eBPF programs that are part of the
same chain are guaranteed to be executed on the same CPU core.
As a consequence, all the programs processing a packet P are guar-
anteed to have access to the same shared data, without performance
penalties due to possible cache pollution, while multiple processing
pipelines, each one operating on a different packet, can be executed
in parallel. The consistency of data in the shared map is guaranteed
by the fact that eBPF programs are never preempted by the kernel
(even across tail calls). They can use the per-CPU map as a sort of
stack for temporary data, which can be subsequently obtained from
the downstream program in the chain with the guarantees that data
are not overwritten during the parallel execution of another eBPF

5The possibility to perform bounded loops in the eBPF program, which is work in
progress under the Linux kernel community, would reduce this limit [13, 14].
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program on another CPU and thus ensuring the correctness of the
processing pipeline.

4.4.2 Pipeline optimizations. Thanks to the modular structure of
the bpf-iptables pipeline and the possibility to re-generate and
compile part of it at runtime, we can adopt several optimizations
that allow (i) to jump out of the pipeline when we realize that
the current packet does not require further processing and (ii) to
modify and rearrange the pipeline at runtime based on the current
bpf-iptables ruleset values.
Early-break. While processing a packet into the classification
pipeline, bpf-iptables can discover in advance that it will not
match any rule. This can happen in two separate cases. The first oc-
curs when, at any step of the pipeline a lookup in the bitvector map
fails; in such event, if that field does not have a wildcard bitvector,
we can directly conclude that the current packet will not match
any rule.

The second case takes place when the result of the bitwise AND
between the two bitvectors is an empty bitvector (all bits set to 0).
In both circumstance, every single module can detect this situation
and jump out of the pipeline by applying the default policy for
the chain, without the additional overhead of executing all the
other component, since no rules matched the current packet. If
the policy is DROP, the packet is immediately discarded concluding
the pipeline processing; if the default policy is ACCEPT, the packet
will be delivered to the destination, before being processed by the
Conntrack Update module (Section 4.5).
Accept all established connections. A common configuration
applied in most iptables rulesets contains an ACCEPT all ESTAB-
LISHED connections as the first rule of the ruleset. When the bpf-
iptables control plane discovers this configuration in a chain,
it forces the Conntrack Label program to skip the classification
pipeline if it recognizes that a packet belongs to an ESTABLISHED
connection. Since this optimization is performed per-chain (we
could have different configurations among the chains), the Con-
ntrack Label module reads the target chain from the packet metadata
per-CPU map previously filled by the Chain Selector and directly
performs a tail-call to the final connection tracking module that will
update the conntrack table accordingly (e.g., updating the times-
tamp for that connection).
Optimized pipeline. Every time the current ruleset is modified,
bpf-iptables creates a processing pipeline that contains the mini-
mum (optimal) number of processing blocks required to handle the
fields of the current ruleset, avoiding unnecessary processing. For
instance, if there are no rules checking the value of TCP flags, that
processing block is not added to the pipeline; new processing blocks
can be dynamically added at run-time if the matching against a new
field is required. In addition, bpf-iptables is able to re-organize
the classification pipeline by changing the order of execution of
the various components that characterize it. For example, if some
components require only an exact matching, a match failed on that
field would lead to an early-break of the pipeline, as presented be-
fore; putting those modules at the beginning of the pipeline could
speed up processing, avoiding unnecessary memory accesses and
additional processing.

HOmogeneousRUleset analySis (HORUS).The HORUS optimiza-
tion is used to (partially) overcome two main restrictions of bpf-
iptables: the maximum number of matching rules, given by the
necessity to perform loop unrolling to compare the bitvectors, and
the rule update time since it is necessary to re-compute the bitvector
used in the classification pipeline when the firewall configuration
changes. The idea behind HORUS is based on the consideration
that often, firewall rulesets (in particular, the ones automatically
configured by orchestrations software), contain a set of homoge-
neous rules that operate on the same set of fields. If we are able to
discover this set of “similar” rules that are not conflicting with the
previous ones (with higher priority) we could bring them in front
of the matching pipeline to speed up their matching. In addition,
since those rules are independent from the others in the ruleset, we
could remove their corresponding bits from the bitvectors used in
the matching pipeline, increasing the space for other non-HORUS
rules. Moreover, if the bpf-iptables control plane discovers that
a newly installed (or removed) rule belongs to the HORUS ruleset,
it does not need to update or even change the entire matching
pipeline, but a single map insertion (or deletion) would be enough,
thus reducing the rule update time in a way that is completely
independent from the number of rules installed in that chain. When
enabled, the HORUS ruleset is inserted right before the Conntrack
Label and consists of another eBPF program with a BPF_HASH table
that contains as key, the set of fields of the HORUS set and, as value,
the final action to apply when a match is found. If the final action is
DROP, the packet is immediately dropped, otherwise if the action is
ACCEPT it will directly jump to the last module of the pipeline, the
Conntrack Update, before continuing towards its destination. On the
other hand, if a match in the table is not found, HORUS will directly
jump to the first program of the classification pipeline, following
the usual path.

An important scenario where HORUS shows its great advantages
is under DoS attacks. In fact, if bpf-iptables detects a HORUS
ruleset that contains all the rules with a DROP action, packets will
be immediately discarded as soon as the match is found in the
HORUS program, hence exploiting (i) the early processing provided
by XDP that allows to drop packets at a high rate and (ii) the ability
to run this program on hardware accelerators (e.g., smartNIC) that
support the offloading of “simple” eBPF programs, further reducing
the system load and the resource consumption.
Optimized forwarding. A packet traversing the FORWARD chain is
filtered according to the installed rules. If the final decision for the
packet is ACCEPT, it has to be forwarded to the next-hop, according
to the routing table of the host. Since eBPF program are running in
the kernel, they can directly lookup the kernel data structures in
order to find the needed information. In particular, starting from
kernel version 4.18, eBPF programs can query the routing table
of the host to find the next-hop information; bpf-iptables uses
this data to optimize the path of the packet in the FORWARD chain
by directly forwarding the packet to the target NIC, shortening its
route within the Linux host. This brigs a significant improvement
in terms of performance as shown in Section 6. Of course, there are
cases where the needed information are not available (e.g., because
the MAC address of the next hop is not yet known); in such events,
bpf-iptables will deliver the first few packets to the Linux stack,
following the usual path.
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4.4.3 Atomic rule update. One of the drawbacks of the LBVS clas-
sification algorithm is that, whenever a new rule is added, updated
or removed from the current ruleset, it triggers the re-computation
of the bitvectors associated with the current fields. In the bpf-
iptables classification pipeline, each matching field is managed
by a separate eBPF program, with each program using a separate
map. To avoid inconsistency problems, we must update atomically
the content of all maps; if a packet enters the pipeline where only
a subset of the maps has been updated, the result of the match-
ing could be unpredictable. Unfortunately, eBPF allows the atomic
update of a single map, while it does not support atomic updates
of multiple maps at the same time. Furthermore, implementing
a synchronization mechanism for the update (e.g., using locks to
prevent traffic being filtered by bpf-iptables) could lead to un-
acceptable service disruption given the impossibility of the data
plane to process the traffic in that time interval.

To solve this issue, bpf-iptables duplicates the current classifi-
cation pipeline as a new chain of eBPF programs andmaps reflecting
the new configuration; this is possible because the bpf-iptables
classification pipeline is stateless, hence creating a parallel chain
will not require to migrate the old state. While this new pipeline
is assembled and injected into the kernel, packets continue to be
processed in the old matching pipeline, accessing the old state and
configuration; when this reloading phase is completed, the Chain
Selector is updated to point to the first program of the new chain,
allowing new packets to flow through it. This operation is guaran-
teed to be atomic by the eBPF subsystem, which uses a particular
map (BPF_PROG_ARRAY) to keep the addresses of the instantiated
eBPF programs. Updating the address of the old chain with the new
one is performed atomically, enabling the continuous processing of
the traffic, always with a consistent state and without any service
disruption.

Finally, when the new chain is up and running, the new config-
uration is unloaded. We discuss and evaluate the performance of
the rule updates within bpf-iptables, iptables and nftables
in Section 6.4.2.

4.5 Connection Tracking
To support stateful filters, bpf-iptables implements its own con-
nection tracking module, which is characterized by four additional
eBPF programs placed in both ingress and egress pipeline, plus an
additional matching component in the classification pipeline that
filters traffic based on the current connection’s state. These module
share the same BPF_HASH conntrack map, as shown in Figure 2.

To properly update the state of a connection, the bpf-iptables
connection tracking component has to intercept the traffic in both
directions (i.e., host to the Internet and vice versa). Even if the user
installs a set of rules operating only on the INPUT chain, the packet
has to be processed by the connection tracking modules located
on the egress pipeline, which are the same as the ones situated
into the ingress pipeline but loaded into the TC_EGRESS hook. The
bpf-iptables connection tracking has built-in support for TCP,
UDP, and ICMP traffic, although does not handle advanced features
such as related connections (e.g., when a control FTP connection is
used to start a new data FTP connection, or a SIP control session

triggers the establishment of voice/video RTP sessions6), nor it
supports IP reassembly.
Packet walkthrough. The Conntrack Label module is used to as-
sociate a label to the current packet7 by detecting any possible
change in the conntrack table (e.g., TCP SYN packet starting a new
connection triggers the creation of a new session entry), which is
written into the packet metadata per-CPU map shared within the
entire pipeline. This information is used inside the classification
pipeline to filter the packet according to the stateful rules of the
ruleset. Finally, if the packet “survives” the classification pipeline, it
is sent to the second connection tracking program, called Conntrack
Update, which updates the conntrack tables with the new connec-
tion state (or, in the case of a new connection, it creates the new
associated entry); consequently, no changes occur if the packet is
dropped with the result that forbidden sessions will never consume
space in the connection tracking table.
Conntrack entry creation. To identify the connection associated
to a packet, bpf-iptables uses the packet 5-tuple (i.e., src-dest IP
address, L4 protocol, and src-dest L4 port) as key in the conntrack
table. Before saving the entry in the table, the Conntrack Update
orders the key according to the formula:

key = {min(IpSrc, IpDest),max(IpSrc, IpDest), Proto,
min(PortSrc .PortDest),max(PortSrc, PortDest)} (1)

This process allows to create a single entry in the conntrack table
for both directions, speeding up the lookup process. In addition,
together with the new connection state, the Conntrack Update mod-
ule stores into the conntrack table two additional flags, ip reverse
(ipRev) and port reverse (portRev) indicating if the IPs and the L4
ports have been reversed compared to the current packet 5-tuple.
Those information will be used during the lookup process to un-
derstand if the current packet is in the same direction as the one
originating the connection, or the opposite.
Lookup process. When a packet arrives to the Conntrack Label
module, it computes the key for the current packet according to the
previous formula and determines the ip reverse and port reverse as
before (that we call ipRev and portRev). At this point, using this
key, it performs a lookup into the conntrack table; if the lookup suc-
ceeds, the new flags are compared with those saved in the conntrack
table; if they are exactly the opposite, as shown in the following
formula:

(currIpRev != IpRev) && (currPortRev != PortRev) (2)

we are dealing with the reverse packet related to that stored session.
On the other hand, if they are exactly the same it means that we
are dealing with a packet in the same direction as the stored one.
Stateful matching module. If at least one rule of the ruleset re-
quires a stateful match, the bpf-iptables control plane instanti-
ates an additional module within the classification pipeline, called
Conntrack Match; this module uses a BPF_ARRAY, filled with all the
possible value-bitvector pairs for each possible label, to find the

6eBPF programs have also the possibility to read the payload of the packet (e.g.,
[1]), which is required to recognize related connections. Supporting these features
in bpf-iptables can be done by extending the conntrack module to recognize the
different L7 protocol from the packet and inserting the correct information in the
conntrack table.
7The possible labels that the conntrack module associates to a packet are the same
defined by the netfilter framework (i.e., NEW, ESTABLISHED, RELATED, INVALID).
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Figure 5: The TCP state machine for the bpf-iptables con-
ntrack function. The grey boxes indicate the connection
states saved into the conntrack table, while the label repre-
sents the value assigned by the first conntrack module be-
fore the packet enters the classification pipeline.

bitvector associated to the current label. While the Conntrack Match
is only instantiated whenever there is a stateful rule in the ruleset,
this is not true for the two connection tracking modules outside
the classification pipeline, which continue to track the existing
connections in order to be ready for state-based rules instantiated
subsequently.
TCP state machine. To provide a better understanding of the
various operations performed by the bpf-iptables connection
tracking module and the level of complexity that is needed to sup-
port this feature, we show the TCP state machine implemented
in bpf-iptables in Figure 5, which reveals not only the different
TCP state but also the corresponding labels assigned at each step.
The first state transition is triggered by a TCP SYN packet (all other
packets not matching that condition are marked with the INVALID
label); in this case, if the packet is accepted by the classification
pipeline, the new state (i.e., SYN_SENT) is stored into the conntrack
table together with some additional flow context information such
as the last seen sequence number, which is used to check the packet
before updating the connection state. Figure 5 refers to forward or
reverse packet (i.e., pkt or rPkt) depending on the initiator of the
connection. Finally, when the connection reaches the TIME_WAIT
state, only a timeout event or a new SYN from the same flow will
trigger a state change. In the first case the entry is deleted from the

conntrack table, otherwise the current packet direction is marked
as forward and the new state becomes SYN_SENT.
Conntrack Cleanup. bpf-iptables implements the cleanup of
conntrack entries in the control plane, with a thread that checks the
presence of expired sessions. For this, the bpf-iptables conntrack
data plane updates a timestamp value associated with that connec-
tion when a new packet is received, which can be subsequently
read by the control plane cleanup thread. Since we noticed that the
usage of the bpf_ktime() helper to retrieve the current timestamp
causes a non-negligible performance overhead, the cleanup thread
updates a per-CPU array map every second with a new timestamp
value, which is used by the data plane when the entry is updated.
Even if this value does not perfectly indicate the current timestamp,
we believe that it is a good trade-off between performance and
accuracy for this type of application.

5 CONTROL PLANE
This Section describes themain operations performed by the control
plane of bpf-iptables, which are triggered whenever one of the
three following events occur.
bpf-iptables start-up. To behave as iptables, bpf-iptables
has to intercept all incoming and outgoing traffic and handle it in
its custom eBPF pipeline. When started, bpf-iptables attaches
a small eBPF redirect program to the ingress (and egress) hook of
each host’s interface visible from the root namespace, as shown in
Figure 2. This program intercepts all packets flowing through the
interface and “jumps” into the first program of the bpf-iptables
ingress or egress pipeline. This enables the creation of a single
processing pipeline that handles all the packets, whatever interface
they come from; in fact, eBPF programs attached to a NIC cannot
serve multiple interfaces, while eBPF modules not directly attached
to a NIC can be called frommultiple eBPF starting programs. Finally,
bpf-iptables retrieves all local IP addresses active on any NIC
and configures them in the Chain Selector ; this initialization phase
is done by subscribing to any netlink event related to status or
address changes on the host’s interfaces.
Netlink notification.Whenever a new netlink notification is re-
ceived, bpf-iptables checks if the notification is related to specific
events in the root namespace, such as the creation of an interface
or the update of an IP address. In the first case, the redirect program
is attached to the eBPF hook of the new interface so that packets
received from it can be intercepted by bpf-iptables. In the second
case, the netlink notification indicates that the IP address of an
interface has changed; as consequence, bpf-iptables updates the
map of local IPs used in the Chain Selector with the new address.
Ruleset changes. Obviously, the control plane is involved when
the configuration of the ruleset changes. This process involves
the execution of the pre-processing algorithm, which calculates
the value-bitvector pairs for each field; those values will be then
inserted into the new eBPF maps and the new programs created on
the parallel chain.

The pre-processing algorithm requires that all the tables used
in the pipeline are correctly filled with the bitvector representing
the current ruleset. Let’s assume we have a list of N packet filtering
rules that require exact or wildcard matching on a set of K fields;
(i) for each field ki ∈ K we extract a set of distinct values θi =
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{ki,1,ki,2, ...,ki, j } with j ≤ card(N ) from the current ruleset N ;
(ii) if there are rules that require wildcard matching for the field
ki , we add an additional entry to the set θi that represents the
wildcard value; (iii) for each ki, j ∈ θi we scan the entire ruleset and
if ∀ni ∈ N we have that ki, j ⊆ ni then we set the bit corresponding
to the position of the rule ni in the bitvector for the value ki, j to 1,
otherwise we set the corresponding bit to 0. Repeating these steps
for each field ki ∈ K will allow to construct the final value-bitvector
pairs to be used in the classification pipeline. The Algorithm 1 shows
the corresponding pseudo-code.

The final step for this phase is to insert the generated values in
their eBPF maps. Each matching field has a default map; however,
bpf-iptables is also able to choose the map type at runtime, based
on the current ruleset values. For example, a LPM_TRIE is used as
default map for IP addresses, which is the ideal choice when a range
of IP addresses is used; however, if the current ruleset contains only
rules with fixed (/32) IP addresses, it changes the map into a HASH_-
TABLE, making the matching more efficient. Before instantiating
the pipeline, bpf-iptables modifies the behavior of every single
module by regenerating and recompiling the eBPF program that
best represents the current ruleset. When the most appropriate
map for a given field has been chosen, bpf-iptables fills it with
computed value-bitvector pairs. The combination of eBPF map
and field type affects the way in which bpf-iptables represents
the wildcard rule. In fact, for maps such as the LPM_TRIE, used to
match IP addresses, the wildcard can be represented as the value
0.0.0.0/0, which is inserted as any other value and will be matched
whenever the are no other matching values. On the other hand,
for L4 source and destination ports, which use a HASH_MAP, bpf-
iptables instantiates the wildcard value as a variable hard-coded
in the eBPF program; when the match in the table fails, it will use
the wildcard variable as it was directly retrieved from the map.

Bpf-iptables adopts a variant of the previous algorithm for
fields that have a limited number of possible values, where instead
of generating the set θi of distinct values for the field ki , it produces
all possible combinations for that value. The advantage is that (i)
it does not need to generate a separate bitvector for the wildcard,
being all possible combinations already contained within the map
and (ii) can be implemented with an eBPF ARRAY_MAP, which is
faster compared to other maps. An example is the processing of
TCP flags; since the number of all possible values for this field is
limited (i.e., 28), it is more efficient to expand the entire field with
all possible cases instead of computing exactly the values in use.

6 EVALUATION
This Section evaluates the performance, correctness and deploy-
ability of bpf-iptables. First, Section 6.1 describes our test en-
vironment, the evaluation metrics and the different ruleset and
packet traces used. Next, Section 6.2 evaluates the performance
and efficiency of individual bpf-iptables components (e.g., con-
nection tracking, matching pipeline). Finally, Section 6.3 simulates
some common use cases showing how bpf-iptables can bring
significant benefits compared to the existing solutions.

Algorithm 1 Pre-processing algorithm
Require: N , the list of filtering rules
1: Extract K , the set of matching fields used in N
2: for each ki ∈ K do
3: bi ← # bit of field Ki
4: θi ← {ki, j | ∀j ≤ min (card (N ), 2bi )} ▷ set of distinct values
5: if ∃ a wildcard rule ∈ N for ki then
6: Add wildcard entry to θi
7: for each ki, j ∈ θi do
8: bitvectori, j [N ] ← {0}
9: for each ni ∈ N do
10: if ki, j ⊆ ni then
11: bitvectori, j [i] = 1

6.1 Test environment
Setup. Our testbed includes a first server used as DUT running
the firewall under test and a second used as packet generator (and
possibly receiver). The DUT encompasses an Intel Xeon Gold 5120
14-cores CPU @2.20GHz (hyper-threading disabled) with support
for Intel’s Data Direct I/O (DDIO) [23], 19.25 MB of L3 cache and
two 32GB RAMmodules. The packet generator is equipped with an
Intel® Xeon CPU E3-1245 v5 4-cores CPU @3.50GHz (8 cores with
hyper-threading), 8MB of L3 cache and two 16GB RAM modules.
Both servers run Ubuntu 18.04.1 LTS, with the packet generator
using kernel 4.15.0-36 and the DUT running kernel 4.19.0. Each
server has a dual-port Intel XL710 40Gbps NIC, each port directly
connected to the corresponding one of the other server.
Evaluationmetrics.Our tests analyze both TCP andUDP through-
put of bpf-iptables compared to existing (and commonly used)
Linux tools, namely iptables and nftables. TCP tests evaluate
the throughput of the system under “real” conditions, with all the
offloading features commonly enabled in production environments.
Instead, UDP tests stress the capability of the system in terms of
packet per seconds, hence we use 64B packets without any offload-
ing capability. When comparing bpf-iptableswith iptables and
nftables we disabled (i) their corresponding connection track-
ing modules (i.e., nf_conntrack and nft_ct), since bpf-iptables
uses its own connection tracking, (Section 4.5), and (ii) the other
kernel modules related to iptables and nftables (e.g., x_tables,
nf_tables). Although most of the evaluation metrics are common
among all tests, we provide additional details on how the evaluation
has been performed on each test separately.
Testing tools. UDP tests used Pktgen-DPDK v3.5.6 [16] and DPDK
v18.08 to generate traffic, while for TCP tests we used either iperf
or weighttp [3] to generate a high number of new parallel TCP
connection towards the DUT, counting only the successful com-
pleted connections [24]. Particularly, the latter reports the actual
capability of the server to perform real work.
Rulesets and Packet-traces.We generated synthetic rulesets that
vary depending on the test under consideration, for this reason we
describe the ruleset content in the corresponding test’s section.
Regarding the generated traffic, we configured Pktgen-DPDK to
generate traffic that matches the configured rules; even in this case
we discuss the details in every test’s description.

6.2 System benchmarking
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Figure 6: Single 6(a) andmulti-core 6(b) comparisonwhen in-
creasing the number of loaded rules. Generated traffic (64B
UDP packets) is uniformly distributed among all the rules.

6.2.1 Performance dependency on the number of rules. This test
evaluates the performance of bpf-iptables with an increasing
number of rules, from 50 to 5k.
Ruleset. We generated five synthetic rulesets with all the rules
matching the 5-tuple of a given packet. Rules have been loaded
in the FORWARD chain and the DUT has been configured as router
in order to forward all traffic received on the first interface to the
second. nftables rules have been generated using the same rules
loaded for bpf-iptables and iptables but converted using the
iptables-translate tool [5].
Test setup. The packet generator is configured to generate traffic
uniformly distributed among all the rules8 so that all packets will
uniformly match the rules of the ruleset and no packet will match
the default action of the chain, in other words, the number of flows
generated is equal to the number of rules under consideration.
Evaluation metrics. We report the UDP throughput (in Mpps)
among 10 different runs. This value is taken by adjusting the rate
at which packets are sent in order to find the maximum rate that
achieves a packet loss less than 1%. Single-core results are taken
by setting the interrupts mask of each ingress receive queue to a
single core, while multi-core performance represent the standard
case where all the cores available in the DUT are used.
Results. Figure 6(a) and 6(b) show respectively the single-core and
multi-core forwarding performance results for this test. We can
notice from Figure 6(a) how bpf-iptables outperforms iptables
by a factor of two even with a relatively small number of rules
(i.e., 50) and this gap is even larger when considering nftables of
which bpf-iptables is even almost 5 times better with 50 rules.
When the number of rules grows, the performance advantage of
bpf-iptables is more evident thanks to its improved classification
pipeline, although its performance decreases as well when a large
number of rules are loaded. This is due to the necessity to scan the
entire bitvector in order to find the final matching rule (Section 4.4).
Finally, Figure 6(b) shows how bpf-iptables scale across multiple
cores; the maximum throughput is achieved with 1K rules, which
is due to the fact that with a smaller number of rules the number of
flows generated by the packet generator is not enough to guaran-
tee uniform processing across multiple cores (due to the RSS/RFS
feature of the NIC), with a resulting lower throughput.

8We used a customized version of Pktgen-DPDK [27] to randomly generate packet for
a given range of IP addresses and L4 port values.
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Figure 7: Multi-core performance comparisonwhen varying
the number of fields in the rulesets. Generated traffic (64B
UDP packets) is uniformly distributed among all the rules.

6.2.2 Performance dependency on the number of matching fields.
Since the bpf-iptablesmodular pipeline requires a separate eBPF
program (hence an additional processing penalty) for eachmatching
field, this test evaluates the throughput of bpf-iptables when
augmenting the number of matching fields in the deployed rules in
order to characterize the (possible) performance degradation when
operating on a growing number of protocol fields.
Ruleset.We generated five different rulesets with a fixed number
of rules (i.e., 1000) and with an increasing complexity that goes from
matching only the srcIP address to the entire 5-tuple. All the rules
have been loaded in the FORWARD chain and have the ACCEPT action,
while the default action of the chain is DROP. As before, nftables
rules have been generated using iptables-translate tool.
Test setup and evaluation metrics. Same as Section 6.2.1.
Results. Results (Figure 7) show that iptables performs almost
the same independently on the complexity of the rules; this is
expected given that is cost is dominated by the number of rules.
Results for bpf-iptables are less obvious. While, in the general
case, increasing the number of fields corresponds to a decrease in
performance (e.g., rules operating on the 5-tuple show the lowest
throughput), this is not always true, with the first four columns
showing roughly the same value and the peak observed when
operating on two fields. In fact, the performance of bpf-iptables
are influenced also by the type of field and number of values for each
field. For instance, the matching against IP addresses requires, in the
general case, a longest prefix match algorithm; as consequence, bpf-
iptables uses an LPM_TRIE, whose performance are dependent on
the number of distinct values. In this case, a single matching on
a bigger LPM_TRIE results more expensive than two matches on
two far smaller LPM_TRIE, which is the case when rules operate
on both IP source and destination addresses9.

6.2.3 Connection Tracking Performance. This test evaluates the
performance of the connection tracking module, which is required
to enable stateful filtering. This test was based on TCP traffic in
order to stress the rather complex state machine of the TCP protocol
(Section 4.5), which was achieved by generating a high number of
new connections per second, taking the number of successfully
completed sessions as performance indicator.
Test setup. In this test weighttp [3] generated 1MHTTP requests
towards the DUT, using an increasing number of concurrent clients
9First ruleset had 1000 rules, all operating on source IP addresses. Second ruleset used
#50 distinct srcIPs and #20 distinct dstIPs, resulting again in 1000 rules.
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Figure 8: Connection tracking with an increasing number of
clients (number of successfully completed requests/s).

to stress the connection tracking module. At each request, a file of
100 byte is returned by the nginx web server running in the DUT.
Once the request is completed, the current connection is closed and
a new connection is created. This required to increase the limit of
1024 open file descriptors per process imposed by Linux in order to
allow the sender to generate a larger number of new requests per
second and to enable the net.ipv4.tcp_tw_reuse flag to reuse
sessions in TIME_WAIT state in both sender and receiver machines10.
Ruleset. The ruleset used in this test is composed of three rules
loaded in the INPUT chain so that only packets directed to a local
application will be processed by the firewall. The first rule accepts
all packets belonging to an ESTABLISHED session, the second rule
accepts all the NEW packets coming from the packet generator and
with the TCP destination port equal to 80 and finally, the last rule
drops all the other packets coming from the packet generator.
Evaluation metrics.We measure the number of successfully com-
pleted requests; in particular, weighttp increments the number of
successfully completed requests if it is completed within 5 seconds,
otherwise a failure is recorded.
Results. bpf-iptables achieves a higher number of requests per
second in both single-core and multi-core tests, with iptables
performing from 5 to 3% less and nftables being down from 7 to
10%, as shown in Figures 8(a) and 8(b). However, for the sake of
precision, the connection tracking module of bpf-iptables does
not include all the features supported by iptables and nftables
(Section 4.5). Nevertheless, we remind that this logic can be cus-
tomized at run-time to fit the necessity of the particular running
application, including only the required features, without having
to update the existing kernel module.

6.3 Common use cases
In this set of tests we analyzed some scenarios that are common in
enterprise environments, such as (i) protecting servers in a DMZ,
and (ii) performance under DDoS attack.

6.3.1 Enterprise public servers. This test mimics the configuration
of an enterprise firewall used as front-end device, which controls
the traffic directed to a protected network (e.g., DMZ) that hosts a
set of servers that must be reachable from the outside world. We

10We also tuned some parameters (e.g., max backlog, local port range) in order to
reduce the overhead of the web server.
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Figure 9: Throughput when protecting a variable number of
services within a DMZ. Multi-core tests with UDP 64B pack-
ets, bidirectional flows.

increase the number of public servers that needs to be protected,
hence tests were repeated with different number of rules.
Ruleset. The first rule accepts all the ESTABLISHED connections
towards the protected network; then, a set of rules accept NEW con-
nections generated by the servers in the protected network toward
the outside world; the latest set of rules enable the communication
towards the services exposed in the protected network by match-
ing on the destination IP, protocol and L4 port destination of the
incoming packets. Among the different runs we used an increasing
number of rules ranging from 50 to 5K, depending on the number
of public services that are exposed to the outside world.
Test setup. All the rules are loaded in the FORWARD chain and the
traffic is generated so that the 90% is evenly distributed among all
the rules and the 10% matches the default DROP rule. The packet
generator is connected to the DUT through two interfaces, simulat-
ing a scenario where the firewall is in between the two (public and
protected) networks. In particular, the first interface simulates the
traffic coming from the external network i.e., a set of clients con-
tacting the internal services, while the second interface simulates a
response from the internal services to the clients. For this reason,
during this test, when the traffic coming from the external and the
internal network reaches the firewall, it considers all the connection
as ESTABLISHED, hence matching the first rule of the ruleset, which
represents a common scenario in an enterprise network.
Evaluation metrics. The test has been repeated 10 times with the
results reporting the throughput in Mpps (for 64B UDP packets)
retrieved by looking at the number of packets processed by the
firewall and dividing it by the test duration.
Results. bpf-iptables outperforms existing solutions thanks to
the optimized path for the FORWARD chain, which transparently
avoids the overhead of the Linux TCP/IP stack, as shown in Fig-
ure 9. In addition, its throughput is almost independent from the
number of rules thanks to the optimization on the ESTABLISHED
connections (Section 4.4.2), which avoids the overhead of the classifi-
cation pipeline if the conntrack module recognizes an ESTABLISHED
connection that should be accepted. Even if iptables would also
benefit from the fact that most packets match the first rule, hence
making the linear search faster, the overall performance in Figure 9
show a decrease in throughput when the number of rules in the
ruleset grows. This is primarily due to the overhead to recognize
the traffic matching the default rule (DROP in our scenario), which
still requires to scan (linearly) the entire ruleset.
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6.3.2 Performance under DDoS Attack. This tests evaluates the per-
formance of the system under DDoS attack. We analyzed also two
optimized configurations of iptables and nftables that make use
of ipset and sets commands, which ensures better performance
when matching an entry against a set of values.
Ruleset. We used a fixed set of rules (i.e., 1000) matching on IP
source, protocol and L4 source port, DROP action. Two additional
rules involve the connection tracking to guarantee the reachability
of internal servers; (i) accepts all the ESTABLISHED connections and
(ii) accepts all the NEW connection with destination L4 port 80.
Test setup and evaluation metrics. The packet generator sends
64Bytes UDP packets towards the server with the same set of source
IP addresses and L4 ports configured in the set of blacklisting rules.
DDoS traffic is sent on a first port connected to the DUT, while a
weighttp client sends traffic on a second port, simulating a legiti-
mate traffic towards a nginx server running in the DUT. Weighttp
generates 1M HTTP requests using 1000 concurrent clients; we
report the number of successfully completed requests/s, with a
timeout of 5 seconds, varying the rate of DDoS traffic.
Results. Results, depicted in Figure 10 (multicore scenario), show
that the performance of bpf-iptables, ipset and nft-set are
comparable in case of low-volume DDoS attacks; iptables and
nftables are slightly worse because of their matching algorithm
that suffers with an high number of rules. However, with higher
DDoS load (> 8Mpps), also the performance of ipset and nft-set
drop rapidly and the server becomes unresponsive, with almost no
requests/s served; iptables and nftables are even worse (zero
goodput at 2.5Mpps). Vice versa, thanks to its matching pipeline at
the XDP level, bpf-iptables is able to successfully sustain about
95.000 HTTP requests/s (i.e., about 60% of the maximum achievable
load) of legitimate traffic when the DDoS attack rate is more than
40Mpps. Higher DDoS load was not tested because of a limitation
of the traffic generator in use.

6.4 Microbenchmarks
We now provide a set of micro-benchmarks that characterize the
system under specific conditions.

6.4.1 Baseline performance. This test analyzes the overhead of
bpf-iptables on a vanilla system, without any firewall rule. This
condition still requires the presence of some processing modules
such as connection tracking and the logic that applies the default
action (i.e., ALLOW) to all packets. This represents the most favorable
case for iptables where cost grows linearly with the number of
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Table 1: Comparison of the time required to append the (n +
1)th in the ruleset (ms).

# rules ipt nft
bpf-iptables HORUS
t11 t22 t33 tH14 tH25

0 15 31 0.15 1165 0.34 382 0.0024
50 15 34 2.53 1560 0.36 1.08 0.0026
100 15 35 5.8 1925 0.35 2.06 0.0026
500 16 36 17 1902 0.34 8.60 0.0027
1000 17 69 33.4 1942 0.34 14.4 0.0027
5000 28 75 135 2462 0.38 37.3 0.0031

1 Time required to compute all the bitvectors-pairs.
2 Time required to create and load the new chain.
3 Time required to remove the old chain.
4 Time required to identify the rules belonging to a HORUS set.
5 Time required to insert the new rule in the HORUS set.

rules, while bpf-iptables has to pay the cost of some programs
at the beginning of the pipeline that must be always active.

The right side of Figure 11 shows the performance of bpf-
iptables, iptables and nftableswhen the traffic (64BUDP pack-
ets) traverses the FORWARD chain. This case shows a considerable
advantage of bpf-iptables thanks to its optimized forwarding
mechanism (Section 4.4.2). The situation is slightly different when
the traffic hits the INPUT chain (Figure 11, right). In fact, in such
case the packets has to follow the usual path towards the stack
before reaching the local application, with no chance to shorten
its journey. While bpf-iptables does not show the improvement
seen in the previous case, it does not show any worsening either,
hence demonstrating that the active code (e.g., the new conntrack
implementation) introduces the same overhead of other solutions.

6.4.2 Rules insertion time. The LBVS matching algorithm requires
the update of the entire pipeline each time the ruleset changes
(Section 4.4.3). This test evaluates the time required to insert the
(n + 1)th rule when the ruleset already contains n rules; in case of
iptables and nft, this has been measured by computing the time
required to execute the corresponding userspace tool. Results, pre-
sented in Table 1, show that both iptables and nftables are very
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fast in this operation, which completes in some tens of milliseconds;
bpf-iptables, instead, requires a far larger time (varying from
1 to 2.5s with larger rulesets). To understand the reason of this
higher cost, we exploded the bpf-iptables rules insertion time
in three different parts. Hence, t1 indicates the time required by
the bpf-iptables control plane to compute all the value-bitvector
pairs for the current ruleset. Instead, t2 indicates the time required
to load the new parallel chain (i.e., compile and load the new eBPF
classification pipeline); during this time, bpf-iptables continues
to process the traffic according to the old ruleset, with the swapping
performed as last step when all the new modules are successfully
created and injected in the kernel11. Finally, t3 is the time required
to delete the old chain, which does not really impact on user expe-
rience since the new pipeline is already filtering traffic after t2.

Finally, the last column of Table 1 depicts the time required by
bpf-iptables to insert a rule that can be handled by HORUS (Sec-
tion 4.4.2). Excluding the first entry of the HORUS set that requires
to load the HORUS eBPF program, all the other entries are inserted
in the HORUS set within an almost negligible amount of time (tH2).
Instead, the detection if the new rule belongs to an HORUS set takes
more time (tH1 ranges from 1 to 40ms), but this can be definitely
reduced with a more optimized algorithm.

6.4.3 Ingress pipeline: XDP vs. TC. bpf-iptables attaches its ingress
pipeline on the XDP hook, which enables traffic processing as early
as possible in the Linux networking stack. This is particularly con-
venient when the packet matches the DROP action or when there
is the possibility to bypass the TCP/IP stack and forward immedi-
ately the packet to the final destination (optimized forwarding in
Section 4.4.2). However, when an eBPF program is attached to the
XDP hook, the Generic Receive Offload12 feature on that interface
is disabled; as a consequence, we may incur in higher processing
costs in presence of large TCP incoming flows.

Results in Figure 12, which refer to a set of parallel TCP flows
between the traffic generator and the DUT, with a void INPUT chain
and the default ACCEPT action, show clearly how the XDP ingress
pipeline pays a higher cost compared to TC, which easily saturates

11Since time t2 depends on the number of matching fields required by each rule
(bpf-iptables instantiates the minimum set of eBPF programs necessary to handle
the current configuration), numbers in Table 1 take into account the worst case where
all the rules require matching on all the supported fields.
12Generic Receive Offload (GRO) is a software-based offloading technique that reduces
the per-packet processing overhead by reassembling small packets into larger ones.

the 40Gbps bandwidth of the link13. This higher cost is given by the
larger number of (small) packets to be processed by bpf-iptables
because of the lack of GRO aggregation; it is important to note that
this cost is not present if TCP data exits from the server (outgoing
traffic), which is in fact a more common scenario.

7 CONCLUSIONS
This paper presents bpf-iptables, an eBPF based Linux firewall
designed to preserve the iptables filtering semantic while improv-
ing its speed and scalability, in particular when a high number of
rules are used. Being based on eBPF, bpf-iptables is able to take
advantage of the characteristics of this technology, such as the dy-
namic compilation and injection of the eBPF programs in the kernel
at run-time in order to build an optimized data-path based on the ac-
tual firewall configuration. The tight integration of bpf-iptables
with the Linux kernel may represent a great advantage over other
solutions (e.g., DPDK) because of the possibility to cooperate with
the rest of the kernel functions (e.g., routing) and the other tools of
the Linux ecosystem. Furthermore, bpf-iptables does not require
custom kernel modules or additional software frameworks that
could not be allowed in some scenarios such as public data-centers.

Bpf-iptables guarantees a huge performance advantage com-
pared to existing solutions, particularly in case of an high number
of rules; furthermore, it does not introduce undue overheads in
the system when no rules are instantiated, even though in some
cases the use of XDP on the ingress hook could hurt the overall
performance of the system. Existing eBPF limitations have been
circumvented with ad-hoc engineering choices (e.g., classification
pipeline) and clever optimizations (e.g., HORUS), which guarantee
further scalability and fast update time.

On the other hand, currently bpf-iptables supports only a
subset of the features available in Netfilter-based firewalls. For
instance, iptables is often used to also handle natting functions,
which we have not considered in this paper, as well as the features
available in ebtables and arptables. Those functionality, together
with the support for additional matching fields are considered as
possible direction for our future work.

8 ACKNOWLEDGEMENT
Authors would like to thank the many people who contributed
to this work, among the others Pere Monclus, Aasif Shaikh and
Massimo Tumolo. Our thanks also to Vmware, which partially
funded this project.

REFERENCES
[1] BCC Authors. 2016. HTTP Filter. https://github.com/iovisor/bcc/tree/master/

examples/networking/http_filter [Online; last-retrieved 15-November-2018].
[2] Cilium Authors. 2018. BPF and XDP Reference Guide. https://cilium.readthedocs.

io/en/latest/bpf/
[3] Lighttpd authors. 2018. weighttp: a lightweight and simple webserver bench-

marking tool. https://redmine.lighttpd.net/projects/weighttp/wiki [Online;
last-retrieved 10-November-2018].

[4] Nftables authors. 2016. Main differences with iptables. https://wiki.nftables.org/
wiki-nftables/index.php/Main_differences_with_iptables

13To avoid TCP and application-level processing to become the bottleneck, we set all
the NIC interrupts to a single CPU core, on which bpf-iptables has to be executed,
while iperf uses all the remaining ones.

ACM SIGCOMM Computer Communication Review

https://github.com/iovisor/bcc/tree/master/examples/networking/http_filter
https://github.com/iovisor/bcc/tree/master/examples/networking/http_filter
https://cilium.readthedocs.io/en/latest/bpf/
https://cilium.readthedocs.io/en/latest/bpf/
https://redmine.lighttpd.net/projects/weighttp/wiki
https://wiki.nftables.org/wiki-nftables/index.php/Main_differences_with_iptables
https://wiki.nftables.org/wiki-nftables/index.php/Main_differences_with_iptables


[5] Netfilter Authors. 2018. Moving from iptables to nftables. https://wiki.nftables.
org/wiki-nftables/index.php/Moving_from_iptables_to_nftables [Online; last-
retrieved 10-October-2018].

[6] Pablo Neira Ayuso. 2018. [PATCH RFC PoC 0/3] nftables meets bpf. https:
//www.mail-archive.com/netdev@vger.kernel.org/msg217425.html

[7] David Beckett. 2018. Hello XDP_DROP. https://www.netronome.com/blog/
hello-xdp_drop/ [Online; last-retrieved 15-November-2018].

[8] D. Borkmann. 2018. net: add bpfilter. https://lwn.net/Articles/747504/ [Online;
last-retrieved 30-June-2018].

[9] Jesper Dangaard Brouer. 2018. XDP Drivers. https://prototype-kernel.
readthedocs.io/en/latest/networking/XDP/implementation/drivers.html [Online;
last-retrieved 18-September-2018].

[10] Jesper Dangaard Brouer and Toke Høiland-Jørgensen. 2003. XDP: challenges and
future work. In LPC’18 Networking Track. Linux Plumbers Conference.

[11] J. Corbet. 2009. Nftables: a new packet filtering engine. https://lwn.net/Articles/
324989 [Online; last-retrieved 30-June-2018].

[12] Jonathan Corbet. 2018. BPF comes to firewalls. https://lwn.net/Articles/747551/
[13] Edward Cree. 2018. Bounded loop support work in progress. https://lwn.net/

Articles/748032/
[14] Edward Cree. 2018. Bounded Loops for eBPF. https://lwn.net/Articles/756284/
[15] James Daly and Eric Torng. 2017. TupleMerge: Building Online Packet Classifiers

by Omitting Bits. In Computer Communication and Networks (ICCCN), 2017 26th
International Conference on. IEEE, 1–10.

[16] DPDK. 2018. Pktgen Traffic Generator Using DPDK. http://dpdk.org/git/apps/
pktgen-dpdk

[17] Matt Fleming. 2017. A thorough introduction to eBPF. https://lwn.net/Articles/
740157/

[18] T. Graf. 2018. Why is the kernel community replacing iptables with BPF? https:
//cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables
[Online; last-retrieved 30-June-2018].

[19] Pankaj Gupta and Nick McKeown. 1999. Packet classification using hierarchical
intelligent cuttings. In Hot Interconnects VII, Vol. 40.

[20] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress
Data Path: Fast Programmable Packet Processing in the Operating System Kernel.
In CoNEXT’18: International Conference on emerging Networking EXperiments and
Technologies. ACM Digital Library.

[21] Docker Inc. 2018. Docker. https://www.docker.com/ [Online; last-retrieved
30-June-2018].

[22] Facebook Inc. 2018. Kubernetes: Production-Grade Container Orchestration.
https://kubernetes.io/ [Online; last-retrieved 30-June-2018].

[23] Intel(R). 2018. IntelÂő Data Direct I/O Technology. https://www.intel.it/
content/www/it/it/io/data-direct-i-o-technology.html [Online; last-retrieved
09-November-2018].

[24] József Kadlecsik and György Pásztor. 2004. Netfilter performance testing. (2004).
[25] T.V. Lakshman and D. Stiliadis. 1998. High-speed policy-based packet forwarding

using efficient multi-dimensional range matching. In ACM SIGCOMM Computer
Communication Review, Vol. 28. ACM, 203–214.

[26] Charles E Leiserson, Harald Prokop, and Keith H Randall. 1998. Using de Bruijn
sequences to index a 1 in a computer word. Available on the Internet from
http://supertech. csail. mit. edu/papers. html 3 (1998), 5.

[27] Sebastiano Miano. 2018. Custom Pktgen-DPDK version. https://github.com/
sebymiano/pktgen-dpdk

[28] S. Miano, M. Bertrone, F. Risso, M. Vásquez Bernal, and M. Tumolo. 2018. Creating
Complex Network Service with eBPF: Experience and Lessons Learned. In High
Performance Switching and Routing (HPSR). IEEE.

[29] Thomas Heinz Michael Bellion. 2002. NF-HIPAC: High Performance Packet
Classification for Netfilter. https://lwn.net/Articles/10951/

[30] Yaxuan Qi, Lianghong Xu, Baohua Yang, Yibo Xue, and Jun Li. 2009. Packet
classification algorithms: From theory to practice. In INFOCOM 2009, IEEE. IEEE,
648–656.

[31] P. Russell. 1998. The netfilter.org project. https://netfilter.org/ [Online; last-
retrieved 30-June-2018].

[32] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. 2003. Packet
classification using multidimensional cutting. In Proceedings of the 2003 con-
ference on Applications, technologies, architectures, and protocols for computer
communications. ACM, 213–224.

[33] Venkatachary Srinivasan, Subhash Suri, and George Varghese. 1999. Packet clas-
sification using tuple space search. In ACM SIGCOMM Computer Communication
Review, Vol. 29. ACM, 135–146.

[34] Venkatachary Srinivasan, George Varghese, Subhash Suri, and Marcel Waldvogel.
1998. Fast and scalable layer four switching. Vol. 28. ACM.

[35] Alexei Starovoitov. 2014. net: filter: rework/optimize internal BPF interpreter’s
instruction set. In Linux Kernel, commit bd4cf0ed331a.

[36] Balajee Vamanan, Gwendolyn Voskuilen, and TN Vijaykumar. 2011. EffiCuts:
optimizing packet classification for memory and throughput. ACM SIGCOMM
Computer Communication Review 41, 4 (2011), 207–218.

[37] Nic Viljoen. 2018. BPF, eBPF, XDP and Bpfilter...What are These Things andWhat
do They Mean for the Enterprise? https://goo.gl/GHaJTz [Online; last-retrieved
15-November-2018].

[38] J. Wallen. 2015. An Introduction to Uncomplicated Firewall (UFW). https:
//www.linux.com/learn/introduction-uncomplicated-firewall-ufw [Online; last-
retrieved 30-June-2018].

ACM SIGCOMM Computer Communication Review

https://wiki.nftables.org/wiki-nftables/index.php/Moving_from_iptables_to_nftables
https://wiki.nftables.org/wiki-nftables/index.php/Moving_from_iptables_to_nftables
https://www.mail-archive.com/netdev@vger.kernel.org/msg217425.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg217425.html
https://www.netronome.com/blog/hello-xdp_drop/
https://www.netronome.com/blog/hello-xdp_drop/
https://lwn.net/Articles/747504/
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/drivers.html
https://lwn.net/Articles/324989
https://lwn.net/Articles/324989
https://lwn.net/Articles/747551/
https://lwn.net/Articles/748032/
https://lwn.net/Articles/748032/
https://lwn.net/Articles/756284/
http://dpdk.org/git/apps/pktgen-dpdk
http://dpdk.org/git/apps/pktgen-dpdk
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables
https://www.docker.com/
https://kubernetes.io/
https://www.intel.it/content/www/it/it/io/data-direct-i-o-technology.html
https://www.intel.it/content/www/it/it/io/data-direct-i-o-technology.html
https://github.com/sebymiano/pktgen-dpdk
https://github.com/sebymiano/pktgen-dpdk
https://lwn.net/Articles/10951/
https://netfilter.org/
https://goo.gl/GHaJTz
https://www.linux.com/learn/introduction-uncomplicated-firewall-ufw
https://www.linux.com/learn/introduction-uncomplicated-firewall-ufw


A APPENDIX
We aim at making our bpf-iptables prototype available so that
anyone can use it and experiment the power of our eBPF based fire-
wall. In this respect, it is worth remembering that the performance
characterization requires a careful prepared setup, including traffic
generators and proper hardware devices (server machines, NICs).

To facilitate the access and execution of bpf-iptables, we cre-
ated a Docker image containing all the instructions necessary to
run the executable, which can be used to replicate the results de-
scribed in this paper. The Docker image is hosted on a DockerHub
repository and can be downloaded with the following command:
$ docker p u l l n e t g r o u pp o l i t o / bpf− i p t a b l e s : l a t e s t

Once downloaded, the image can be executed with the under-
lying command, which will print a detailed description on the
terminal containing all the information necessary to execute bpf-
iptables and how to use it.
$ docker run − i t n e t g r o u pp o l i t o / bpf− i p t a b l e s

Rulesets. The rulesets and the scripts used for the evaluation are
provided also shipped inside the Docker image and can be found
inside the direction tests of the container.

Source code. This software project is currently in the final testing
phases and it is expected to be released in the open-source domain
in the upcoming month of January 2019.
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